Outbreak Management
Health IT in the United States

John W. Loonsk MD FACMI

CMIO CGI Federal
Adjunct Associate Professor
Center for Population Health IT
Johns Hopkins Bloomberg School of Public Health
Outbreak management health IT needs have been known for many years*

Health IT’s value in outbreak management is not notional, it has been demonstrated to be critical for some circumstances.

Adopted EHRs are a new addition to the national picture, but they are only partially relevant – much must occur outside of EHRs.

Health reform and "market motivators" may advance some interoperability, but even a reformed market does not address information exchange for outbreak management needs (why public Meaningful Use dollars are so important here).

Although the public expects a safety net IT infrastructure to be in place for public health emergencies, it largely is not

Some reasons include:

• Variable understanding of public health needs
• The business / market driven healthcare enterprise
• Variability in the layout of healthcare organizations and health IT systems nationally
• Variability in state laws, state and local public health departments, and infrastructure implementation nationally
• Variability in emergency events and nature!
Some Other Elements of Variability

How contagious is Ebola?
How the Ebola virus compares with other contagious viruses. The reproduction rate or R_0, calculates the number of people likely to be infected by one person who has a disease.

<table>
<thead>
<tr>
<th>REPRODUCTION RATE (R_0)</th>
<th>Initial infected patient</th>
<th>Person he or she has infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0</td>
<td>1 to 4 people</td>
<td>2 to 4</td>
</tr>
<tr>
<td>DISEASE</td>
<td>Ebola</td>
<td>SARS</td>
</tr>
<tr>
<td>HOW IT SPREADS</td>
<td>Bodily fluids</td>
<td>Airborne droplets</td>
</tr>
<tr>
<td></td>
<td>Airborne droplets</td>
<td>Fecal-oral route</td>
</tr>
<tr>
<td></td>
<td>Airborne droplets</td>
<td>Airborne droplets</td>
</tr>
<tr>
<td></td>
<td>Airborne droplets</td>
<td>Airborne</td>
</tr>
<tr>
<td></td>
<td>Airborne droplets</td>
<td>Airborne droplets</td>
</tr>
</tbody>
</table>

Sources: Michigan Center for Public Health; WHO; Transmission Dynamics and Control of Severe Acute Respiratory Syndrome, Nature; Understanding the Dynamics of Ebola Epidemics, National Institute of Health

Method of Spread
- Bodily fluids, airborne, airborne droplets, environmental spores

Pathogen
- Ebola, MERS, SARS, Anthrax, Mumps, Pertussis…

Duration of Contagiousness
- Length of pre-symptomatic, symptomatic, and post-symptomatic risk

Host Resistance
- Natural and induced

Infectiousness - Average number of secondary cases from a primary one

Critical Outbreak Health IT Needs
- Paper and phones may suffice
- Wash hands and close meeting places - aggregate data
Outbreak Management HIT

1. **Index case** identification

 - Limited awareness

 - Conceptually one place “syndromic surveillance” might help, but few outbreaks identified this way

 - Providers are still the best “detectors,” but they need information support and are not primarily “reporters”
Outbreak Management HIT

2. **Screening** for additional cases

 – Heightened awareness after index case brings different provider information support needs

 – Getting **possible cases** to people who are focused on looking for and managing outbreaks is a critical need – they have particular population focus and tools
Outbreak Management HIT

2. Screening for additional cases
 - Heightened awareness after index case brings provider information support needs
 - Getting possible cases to people focused on looking for and managing outbreaks is a critical need they have particular population focus and tools
3. Reporting for monitoring and case management

- Focus moves outside of EHR

- Automating the movement of cases to public health systems has demonstrated significantly greater yield of cases

- Also need link-back for clinical investigation of the outbreak population and for information sharing with providers
3. Reporting for monitoring and case management

- Focus moves outside of EHR

- Automating the movement of cases to public health systems has demonstrated significantly greater yield of cases

- Also need link-back for clinical investigation of the outbreak population and for information sharing with providers

First and foremost providers are not public health reporters

West Nile Virus NYC - 1999

![Bar chart showing number of cases reported and unreported over dates.](image-url)

Epi investigation started

- Date of Admission

- Number of cases

- Unreported cases

- Reported cases

NYC DOHMH – Marci Layton
4. Case management

- Public health receives **possible and confirmed cases** and works these populations

- Cases confirmed with **lab results** and / or investigation

- **Contact tracing** to manage, link, and work what can be a rapidly increasing number of possible cases
4. **Case management**

- Public health receives **possible and confirmed cases** and works these populations

- Cases confirmed with **lab results** and / or investigation

- **Contact tracing** to manage, link, and work what can be a rapidly increasing number of possible cases
4. **Case management**

- Public health receives **possible and confirmed cases** and works these populations

- Cases confirmed with **lab results** and / or investigation

- **Contact tracing** to manage, link, and work what can be a rapidly increasing number of possible cases
Outbreak Management HIT

4. Case management

- Public health receives possible and confirmed cases and works these populations

- Cases confirmed with lab results and/or investigation

- Contact tracing to manage, link, and work what can be a rapidly increasing number of possible cases
4. **Case management**

- From a World Health Organization report diagram detailing SARS transmission in Singapore

- No diagnostic lab test, no vaccine, no medication

- Health IT case management is a critical
5. **Case reporting** and visualization
 - Managing **case counts** is a significant coordination issue

6. **Countermeasure** delivery and tracking
 - Medication and vaccine (inside and outside of healthcare)
 - **Quarantine** management (phone video monitoring, elsewhere - smart bracelets)

7. Research and **long term follow-up**
 - Tail of outbreak life cycle

From SARS transmission in Singapore
World Health Organization Regional Office for the Western Pacific 2005
Before widespread EHR adoption:

- Even “electronic” case reporting is manual
 - Reporting yield can be very low at times
 - in extreme example CDC reports that one out of ten cases of Lyme disease, recorded in clinical care, are reported to health department despite state laws
 - Providers frequently do not know when, how, or where to report

- **Electronic Laboratory Reporting (ELR)** is at times a case reporting surrogate
 - Automated delivery from lab systems leads to high yield
 - Data are limited to what is available in the lab order and the test result

- **Syndromic Surveillance** takes advantage of available electronic data
 - Automated, immediate data from clinical care organizations
 - Started with Admission Discharge and Transfer (ADT) “chief complaints”
 - Not suitable for case management
Outbreak Functions:

1. Support for index case detection
2. Screening for additional possible cases
3. Isolation

Exchange Functions:

4. Case-based data
5. Aggregate data
6. Guidance information
7. Investigation

Outbreak Functions:

8. Case management
 - Confirmation of possible cases
 - Lab result integration (public health and clinical)
 - Contact tracing
9. Case reporting and visualization
10. Situational awareness
11. Countermeasure delivery and tracking
 - Meds, vaccines, and more in commercial supply chain, health departments, and stockpile
 - Quarantine management
12. Research and long term follow-up
Surveillance / Outbreak Management Systems

- Commercial, self-developed, and CDC developed systems
- Implemented at state and local health departments and some mobile applications
- Surveillance, case management, contact tracing, investigation support, reporting to local and state health departments as well as CDC
Public Health Lab Information Management Systems

- Support testing that only public health labs do and when only public health labs will do it
- Rigorous preparedness protocol adherence
- Support surge capacity
- Must integrate with state health department, multiple federal agencies and clinical care
Countermeasure Tracking and Delivery Systems

- Track and manage countermeasures in state and local health departments, the national stockpile, and the commercial supply chain
- Push for use of new vaccines can have additional “take” and adverse events surveillance needs
- Important connections with immunization information systems, variety of systems / organizations that deliver vaccines
Research and Long Term Follow-Up Registries

- An important part of a learning health system
- With emerging infectious diseases, changing environmental pressures, antibiotic resistance and more, understanding how to deal with threats and best apply health IT for populations
- Insure that the safety net is in place that the public expects from their support
Conclusions

- Outbreak cases and their contacts can expand geometrically.
- When there is no vaccine or treatment, contact tracing and controlling new exposures is the countermeasure of choice.
- When case counts rise, dedicated surveillance / outbreak management systems are the only way to effectively manage cases and support contact tracing.
- Public health systems need to get electronic cases from EHRs and need to be funded to support their parts of these transactions.